If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=324
We move all terms to the left:
x+x^2-(324)=0
a = 1; b = 1; c = -324;
Δ = b2-4ac
Δ = 12-4·1·(-324)
Δ = 1297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1297}}{2*1}=\frac{-1-\sqrt{1297}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1297}}{2*1}=\frac{-1+\sqrt{1297}}{2} $
| X-0.25x=25 | | 5x-9/3=12 | | 5x-12/3=93 | | (3x+2)^2-(x-1)^2=0 | | 5(2x-5)=(1)/(2)(18x+40) | | 6x-71x+12=0 | | 5(2x-5)=12(18x+40) | | 43=4z/9+23 | | 2-x/4=1 | | 2x²-5x+27=0 | | b+2/3-3-b/5=5b+2/10 | | x*2x=24 | | 2^x=2^x+1+12 | | –5.6n−6.25=–1.9n+6.33 | | 22=2(2x+(8-x) | | x+7=2/5 | | 3x2-19x+3=0 | | 5x/8=x-6 | | 2.5=y/3.6 | | 5x–4=24+(-2x)x=4 | | 9^x+6^x-2*4^x=0 | | 9/5+t=17/5 | | X2+12x=64 | | 50^x-20^x+50=0 | | 100-4n/3=5n+6/4+6 | | 12x+3x=4x. | | X+x*0,7=1200 | | 2.8+10m=7.39 | | 49x^2-56x+1=0 | | |2x+9|10=5 | | -8=17x | | u²+4u-5=0 |